肇庆华图题库

首页 > 华图题库

一个不计厚度的圆柱型无盖透明塑料桶,桶高2.5分米,底面周长为24分米,AB为底面直径。在塑料桶内壁

广东华图教育 | 2022-10-21 06:12

收藏

[单选题]

一个不计厚度的圆柱型无盖透明塑料桶,桶高2.5分米,底面周长为24分米,AB为底面直径。在塑料桶内壁桶底的B处有一只蚊子,此时,一只壁虎正好在塑料桶外壁的A处,则壁虎从外壁A处爬到内壁B处吃到蚊子所爬过的最短路径长约为:

A . 10分米
B . 12.25分米
C . 12.64分米
D . 13分米

  ---------------------------------

  参考答案:

C

  ---------------------------------

  答案解析:

第一步:判断题型-------本题为几何问题

第二步:题目详解
从外壁走到内壁,最短情况有两种可能,分别为:
(一)圆柱侧面不展开:
根据两点之间直线最短,壁虎从A点沿着外壁直上直下爬入桶内部走了2.5+2.5=5,由于不计筒壁厚度,此时壁虎相当于在内壁的A点处,然后再走直径即可到达桶内壁的B处,走了直径=24÷π≈24÷3.14≈7.64,此时的最短距离=5+7.64=12.64分米。
(二)圆柱侧面展开为矩形:
根据直线同侧两点到直线上同一点距离之和最短用对称点法,画出A点的对称A′,即可将A、B两点放在同一个平面上并连线,如下图所示:

在直角三角形AA′B中,根据勾股定理:A′A+AB+=A′B。
A′A =2.5×2=5,AB=12,则,即最短距离为13分米。
综上,爬过的最短路径长约为12.64分米。

故本题选C。
【2021-联考/山西-069】

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有